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Hydrogen is a promising energy vector and a sustainable alternative to fossil fuels due to its high 
energy content (141.6 MJ/kg) and zero carbon emissions. Dark fermentation (DF) offers a renewable 
and environmentally friendly route for hydrogen generation from organic matter, while hydrothermal 
carbonization (HTC) of biomass wastes is presented as a treatment that can effectively transform the 
organic matter into a hydrochar and a process water (PW) rich in biodegradable compounds, which can 
be used as partially hydrolyzed substrate on DF to enhance biohydrogen production efficiency [1]. This 
study focuses on the treatment of food waste (FW), composed of fruit and vegetables wastes from a 
local store (91.2% moisture, 89.1 gCOD/L) by sequential treatment of HTC and DF to maximize hydrogen 
production by modulating the DF key operational parameters: pH (4.8, 5.5), hydraulic retention time 
(HRT; 3.5, 5 d) and organic loading rate (OLR; 2.5, 5.0, 7.5 gCOD/L d). Moreover, the volatile fatty acids 
production, as a value-added byproduct, is also determined. 

Dark fermentation process, at 
thermophilic range (55 ºC) using adapted 
mixed sludge from a wastewater treatment 
plant as inoculum, and PW from the HTC of 
food waste (Parr Instrument model 4524; 
180 ºC, 1 h), as a substrate, was carried out 
in a 3 L continuously stirred tank reactor. 
Experimental results showed an optimal H2 
production of 54.0 ± 1.4 mL H2/ gCOD at pH 
5.5, HRT 5 d and OLR of 5 gCOD/L·d, which 
means 37%v/v of total biogas. pH showed 
the most significant impact over H2 production, 
with 92% lower performance at pH 4.8 than optimal conditions. Regarding OLR, H2 production at pH 5.5 
and HRT 5 d reaches 32.9 ± 1.6 mL H2/ gCOD at 2.5 gCOD/L·d and 34.1 ± 2.5 mL H2/ gCOD at 7.5 gCOD/L·d, 
associated with lack of substrate and substrate inhibition, respectively [2]. HRT showed a minor impact 
on reactor performance, showing the second highest H2 production (44.2 ± 1.4 mL H2/ gCOD) at HRT 3.5 
d, pH 5.5 and OLR 5 gCOD/L d. 

At the above-mentioned optimal H2-producing conditions, the system achieved the highest total 
carbohydrates removal (72%), and an acidification degree of 0.31, with acetate (2.36 ± 0.12 g/L) and 
butyrate (2.17 ± 0.13 g/L) as main metabolites. Taxonomic analysis of the initial sludge was dominated 
by Prevotellaceae (22%) and Bacteroidaceae (13%), while the effluent at the end of the optimized H2-
producing conditions was constituted by Thermoanaerobacterales III (23%), Acetobacteraceae (20%), 
and Clostridiaceae (8%) species, associated with H2 production pathways [3], and Lactobacillaceae 
(18%) species, that carry out lactate production and could enhance hydrogen production by lactate-
driven DF pathways [4]. Therefore, we can conclude that the sequential process of HTC and DF 
emerges as a promising strategy of material and energy recovery from FW. 
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Fig 1. Biogas production and composition under optimal conditions. 


