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Hydrogen is a promising energy vector and a sustainable alternative to fossil fuels due to its high
energy content (141.6 MJ/kg) and zero carbon emissions. Dark fermentation (DF) offers a renewable
and environmentally friendly route for hydrogen generation from organic matter, while hydrothermal
carbonization (HTC) of biomass wastes is presented as a treatment that can effectively transform the
organic matter into a hydrochar and a process water (PW) rich in biodegradable compounds, which can
be used as partially hydrolyzed substrate on DF to enhance biohydrogen production efficiency [1]. This
study focuses on the treatment of food waste (FW), composed of fruit and vegetables wastes from a
local store (91.2% moisture, 89.1 gcoo/L) by sequential treatment of HTC and DF to maximize hydrogen
production by modulating the DF key operational parameters: pH (4.8, 5.5), hydraulic retention time
(HRT; 3.5, 5 d) and organic loading rate (OLR; 2.5, 5.0, 7.5 gcopo/L d). Moreover, the volatile fatty acids
production, as a value-added byproduct, is also determined.
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with 92% lower performance at pH 4.8 than optimal conditions. Regarding OLR, H2 production at pH 5.5
and HRT 5 d reaches 32.9 + 1.6 mL Ha/ gcop at 2.5 gcoo/L-d and 34.1 + 2.5 mL Ha/ gcop at 7.5 gcoo/L-d,
associated with lack of substrate and substrate inhibition, respectively [2]. HRT showed a minor impact
on reactor performance, showing the second highest Hz production (44.2 £ 1.4 mL H2/ gcop) at HRT 3.5
d, pH 5.5 and OLR 5 gcoo/L d.

At the above-mentioned optimal Hz-producing conditions, the system achieved the highest total
carbohydrates removal (72%), and an acidification degree of 0.31, with acetate (2.36 + 0.12 g/L) and
butyrate (2.17 + 0.13 g/L) as main metabolites. Taxonomic analysis of the initial sludge was dominated
by Prevotellaceae (22%) and Bacteroidaceae (13%), while the effluent at the end of the optimized Ho-
producing conditions was constituted by Thermoanaerobacterales Il (23%), Acetobacteraceae (20%),
and Clostridiaceae (8%) species, associated with Hz2 production pathways [3], and Lactobacillaceae
(18%) species, that carry out lactate production and could enhance hydrogen production by lactate-
driven DF pathways [4]. Therefore, we can conclude that the sequential process of HTC and DF
emerges as a promising strategy of material and energy recovery from FW.
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Fig 1. Biogas production and composition under optimal conditions.



