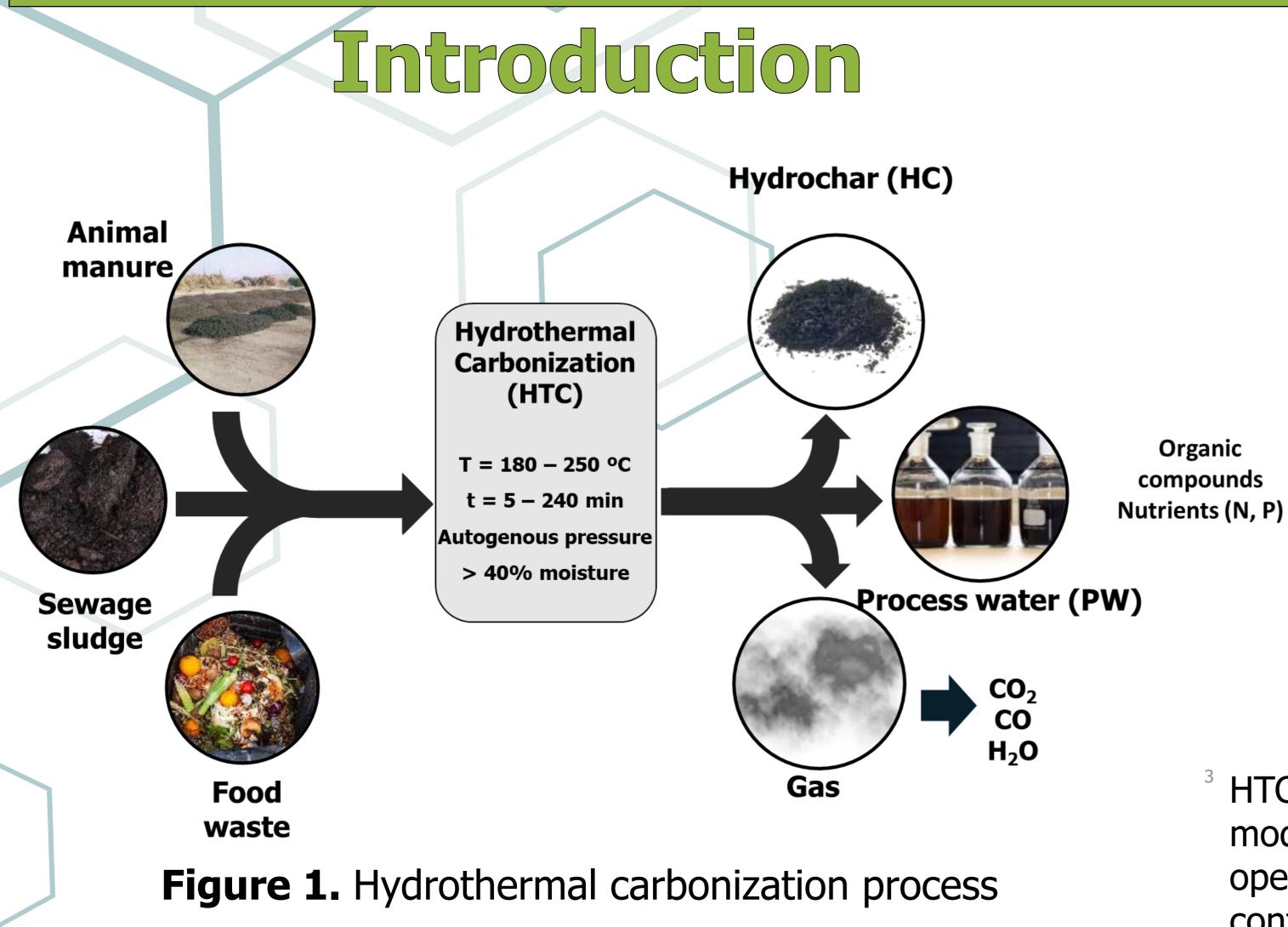

Continuous hydrothermal treatment for efficient management of biomass wastes cor

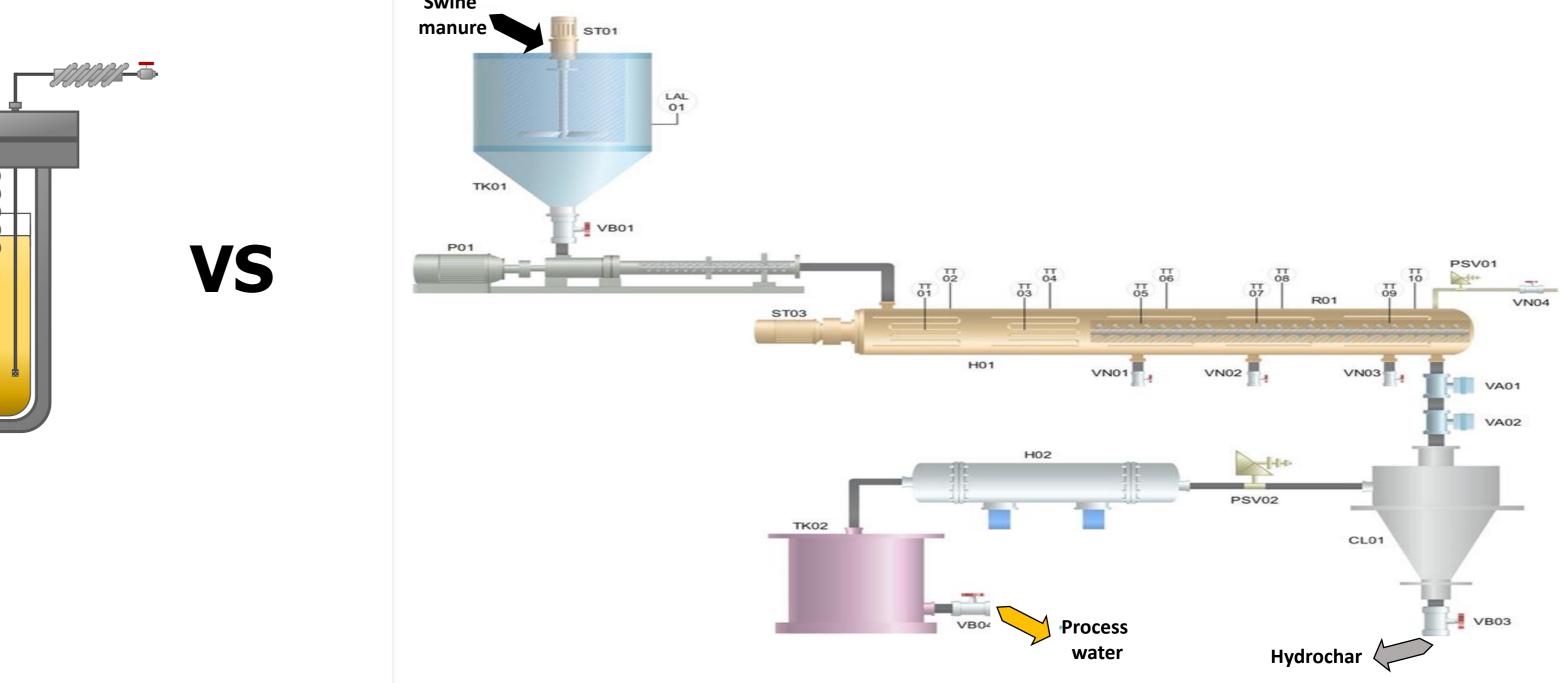

R.P. Ipiales^{1,2}, A. Sarrion¹, E. Diaz¹, Coronella C. J.³, M.A. de la Rubia¹, A.F. Mohedano¹

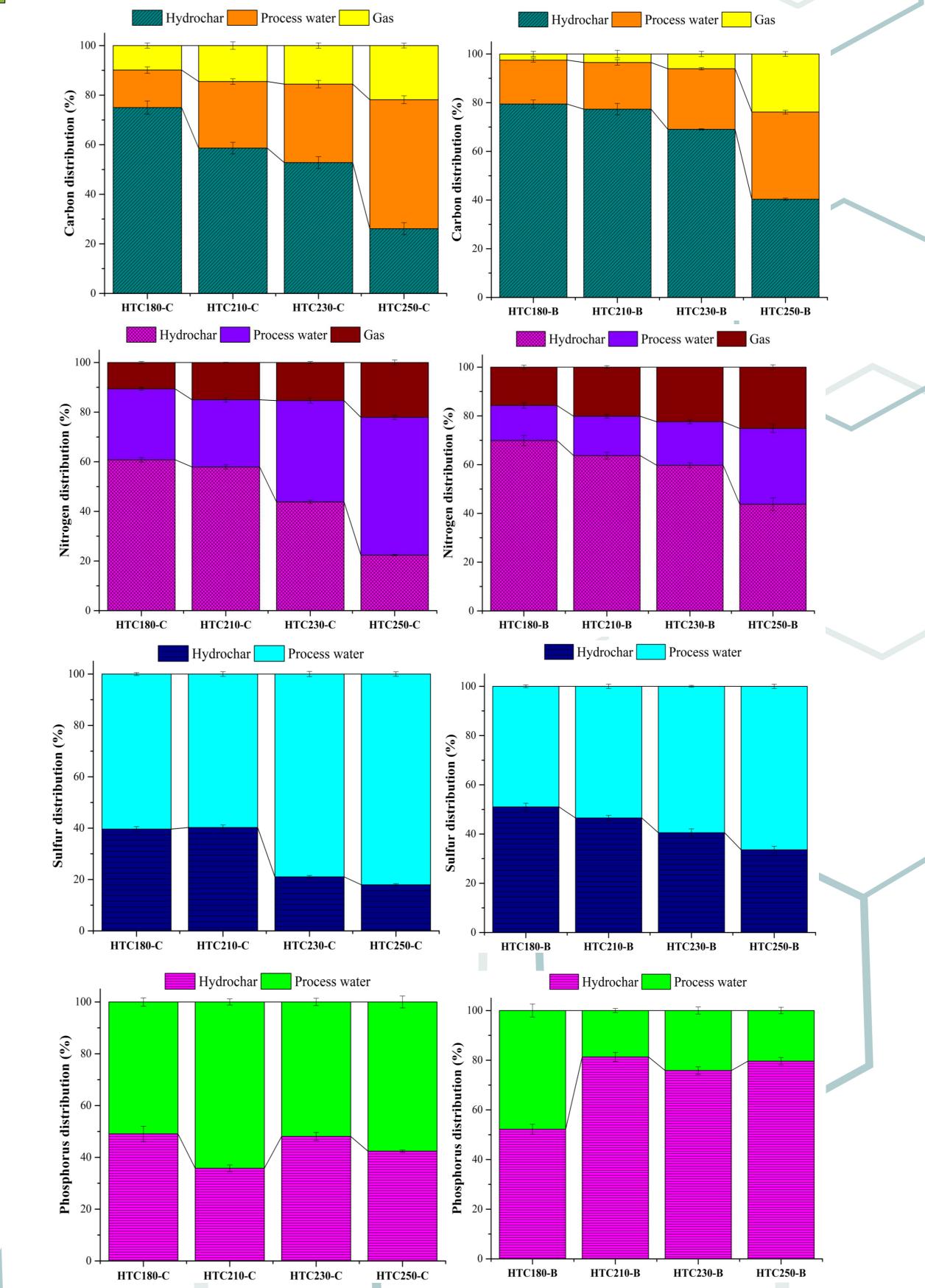
¹Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain

²Arquimea-Agrotech, 28400 Collado Villalba, Madrid, Spain

³Department of Chemical and Materials Engineering, University of Nevada, Reno, 89557, Nevada, United States The World Conference on Carbon Presenting author email: <u>angelf.mohedano@uam.es</u>

Materials and methods




Figure 2. Scheme of continuous and batch hydrothermal carbonization reactor

HTC runs in continuous mode was performed in ARQUIMEA – HTC unit, while HTC runs in batch mode were carried out in an electrically heated ZipperClave® pressure vessel of 4L at same operational conditions of continuous runs. In each sequence, swine manure (SM) with a total solid content \approx 5% were carried out at 180, 210, 230 and 250 °C and resident time 45 min. Hydrochar and process water were denoted according to the carbonization temperature and a letter C and B of continuous and batch process respectively, i.e., HC180-C, HC210-C, HC230-C and HC250-C.

Results and discussion

Table 1. Main characteristics of swine manure and hydrochars

	Ү _{нс} (%)	VM (%)	Ash (%)	C (%)	N (%)	S (%)	HHV (MJ kg ⁻¹)
	_	75.8 (0.1)	10.5 (0.1)	45.0 (0.4)	1.4 (0.0)	0.5 (0.0)	18.5 (0.2)
НС180-С	71.8 (3.1) ^a	69.6 (0.3) ^a	5.5 (0.2) ^a	47.1 (0.6) ^a	0.8 (0.1) ^a	0.3 (0.0) ^a	18.8 (0.1) ^a
НС210-С	52.4 (2.4) ^b	75.0 (0.4) ^b	3.7 (0.1) ^b	50.4 (0.3) ^b	1.6 (0.3) ^b	0.4 (0.0) ^b	20.3 (0.3) ^b
НС230-С	46.2 (1.9) ^c	73.8 (0.2) ^b	3.9 (0.2) ^b	51.5 (0.6) ^c	1.4 (0.1) ^c	0.2 (0.0) ^c	20.7 (0.3) ^c
НС250-С	22.7 (0.6) ^d	72.9 (0.2) ^c	3.9 (0.2) ^b	51.7 (0.5) ^c	1.2 (0.0) ^d	0.4 (0.0) ^b	20.9 (0.2) ^c
HC180-B	42.9 (0.4) ^e	71.5 (0.4) ^d	3.2 (0.1) ^b	50.0 (0.6) ^b	1.4 (0.0) ^c	0.3 (0.0) ^a	19.9 (0.3) ^b
HC210-B	40.1 (0.5) ^e	71.9 (0.3) ^d	3.9 (0.2) ^b	52.2 (0.6) ^c	1.4 (0.1) ^c	0.3 (0.0) ^a	20.5 (0.4) ^{b,c}
НС230-В	35.2 (1.0) ^f	71.6 (0.4) ^d	3.8 (0.2) ^b	53.0 (0.1) ^d	1.5 (0.0) ^b	0.3 (0.0) ^a	21.0 (0.1) ^c
HC250-B	19.9 (0.6) ^g	68.7 (0.1) ^e	6.3 (0.2) ^c	54.8 (0.3) ^d	1.9 (0.0) ^d	0.5 (0.0) ^d	25.0 (0.2) ^d

Table 2. Process water characteristics obtained in continuous and batch HTC

	TCOD (g L ⁻¹)	TOC (g L ⁻¹)	рН	TN (g L ⁻¹)	P-P0 ₄ (mg L ⁻¹)
PW180-C	6.5 (0.2) ^a	3.5 (0.1) ^a	6.0 (0.2) ^a	173.0 (2.4) ^a	48.3 (0.5) ^a
PW210-C	10.2 (0.6) ^b	6.1 (0.1) ^b	4.4 (0.4) ^b	267.0 (2.2) ^b	68.3 (0.4) ^b
PW230-C	11.0 (0.5) ^b	7.2 (0.2) ^c	4.0 (0.1) ^b	294.0 (2.5) ^c	68.3 (0.4) ^b
PW250-C	12.6 (0.7) ^c	11.0 (0.3) ^d	4.2 (0.1) ^b	238.8 (4.5) ^d	85.3 (0.1) ^c
PW180-B	16.3 (0.2) ^d	8.1 (0.2) ^e	4.3 (0.4) ^b	617.0 (3.4) ^e	64.3 (0.3) ^b
PW210-B	19.8 (0.5) ^e	9.5 (0.4) ^f	4.2 (0.1) ^b	641.0 (1.8) ^f	38.0 (0.1) ^e

PW250-B 19.9 (0.4) ^e 9.7 (0.2) ^f 5.1 (0.2) ^c 800.0 (1.5) ^h 52.3 (0	2)(
PW230-B 21.2 $(0.5)^{r}$ 9.9 $(0.1)^{r}$ 3.8 $(0.2)^{b}$ 675.2 $(1.6)^{g}$ 40.8 $(0.5)^{r}$	· . 2)'

Conclusions

Figure 3. Distribution of main element in hydrochar, process water and gas fraction, Carbon, Nitrogen, Sulfur and Phosphorus

- The continuous HTC process resulted in a hydrochar with enhanced characteristics with respect to the feedstock and a process water with high organic matter and nutrient (N, P and minerals) content
- The hydrochar showed characteristics suitable for industrial use as a solid biofuel according to ISO/TE 17225-8 (HHV > 17 MJ kg-1, N < 3 wt.%, S < 0.5 wt.%, MV < 75 wt.%, and ash < 10 wt.%)
- The implementation of a continuous HTC process in an intensive farm could be an efficient pathway for the valorization and management of swine manure, allowing to obtain value-added products (hydrochar, biogas and P-rich minerals) compared to the product (compost) obtained in the traditional management of swine manure

